

Ordering of Pd^{2+} and Pd^{4+} in the Mixed-Valent Palladate KPd_2O_3

Rodion V. Panin,[†] Nellie R. Khasanova,^{*,†} Catherine Bougerol,^{‡,§} Walter Schnelle,[⊥] Gustaaf Van Tendeloo,[§] and Evgeny V. Antipov[†]

[†]Department of Chemistry, Moscow State University, Moscow 119991, Russia, [‡]NPS CEA-CNRS joined group, Institute Néel, 25 Avenue des Martyrs, 38042 Grenoble Cedex, France, ¹Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Strasse 40, 01187 Dresden, Germany, and [§]EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium

Received November 11, 2009

A new potassium palladate KPd₂O₃ was synthesized by the reaction of KO₂ and PdO at elevated oxygen pressure. Its crystal structure was solved from powder X-ray diffraction data in the space group $R\overline{3}m$ (a=6.0730(1) Å, c=18.7770(7) Å, and Z=6). KPd₂O₃ represents a new structure type, consisting of an alternating sequence of K^+ and $Pd_2O_3^-$ layers with ordered Pd^{2+} and Pd⁴⁺ ions. The presence of palladium ions in di- and tetravalent low-spin states was confirmed by magnetic susceptibility measurements.

Complex oxides, containing palladium in either the +2 or +4 oxidation state, are not numerous. While compounds of divalent palladium, such as $Ba_2PdO_3^{-1}$ and MPd_3O_4 (M = Sr, Ca),² have been prepared by a conventional solid-state reaction or by a hydroxide flux method, a high-pressure technique is generally required to synthesize complex oxides containing palladium in higher oxidation states, such as $Ln_2Pd_2O_7$ (Ln = Gd, Dy, Er, Yb, Sc, Y),³ LnPd_2O_4 (Ln = La, Pr, Nd, Gd, Y),^{4,5} LaPdO₃,⁶ Zn₂PdO₄,⁷ and M₄PdO₆ (M = Ca, Sr).⁸ From a structural point of view, palladium oxides can be divided into two groups: those containing divalent palladium in planar coordination and those with tri- or tetravalent palladium in octahedral coordination. The planar coordination of palladium remains prevalent in the mixed-valent palladium oxides, where PdO₄ units create a three-dimensional structure by corner-sharing $(LnPd_2O_4^{4,5})$ with Ln = La, Pr, Nd, Gd, Y and $NaPd_3O_4^{9}$) or form PdO₂ staggered strips by connecting via common edges (K3Pd2- O_4^{9}). The only compound for which charge disproportionation and both types of palladium coordination were observed is Ba₂Hg₃Pd₇O₁₄ with a three-dimensional framework built up of PdO₄ and PdO₆ units sharing common edges and corners.10

In this Communication, we report on the synthesis, crystal structure, and magnetic properties of the new KPd₂O₃ phase, containing $Pd_2O_3^-$ layers with ordered Pd^{2+} and Pd^{4+} cations.

KPd₂O₃ was synthesized by a solid-state reaction from a mixture of KO₂ (Aldrich, 95%) and PdO prepared from palladium metal (99.99%). The initial amounts of reagents, partial oxygen pressure, and time and temperature of annealing were varied to produce the pure KPd₂O₃ phase. Some excess of KO₂ was applied to compensate for the loss of alkali metal due to volatilization upon heating, which resulted in the formation of K₂SiO₃ as a white deposit on the inner walls of the silica ampules used for the preparation. Mixtures of reagents ($m \approx 0.1$ g) were intimately ground, pressed into pellets, and placed in corundum crucibles. The synthesis was carried out in silica tubes ($V \approx 20 \text{ cm}^3$), which were evacuated, then filled with oxygen up to the required pressure, and sealed. The single-phase sample was obtained from a mixture of KO₂ and PdO in a molar ratio of 3:2 by a two-step annealing at 600 °C and then at 650 °C (for 20 h at each step) with a starting oxygen pressure of 0.5 atm. The preparation of the reagent mixtures and sample handling after annealing were carried out in a glovebox (MB 120 B-G, MBraun) under an argon atmosphere. The resulting dark-brown KPd₂O₃ appeared to be very sensitive to moisture and readily transformed to a mixture of $K_2[Pd(OH)_4]^{11}$ and PdO. Therefore,

^{*}To whom correspondence should be addressed. E-mail: nellie@icr.chem. msu.ru. Tel.: +7(495) 9393490. Fax: +7(495) 9394788.

⁽¹⁾ Laligant, Y.; Le Bail, A.; Ferey, G.; Hervieu, M.; Raveau, B.; Wilkinson, A.; Cheetham, A. K. Eur. J. Solid State Inorg. Chem. 1988, 25, 237 - 246

⁽²⁾ Smallwood, P. L.; Smith, M. D.; Zur Loye, H.-C. J. Cryst. Growth 2000, 216, 299-303

⁽³⁾ Sleight, A. W. Mater. Res. Bull. 1968, 3, 699-704.

⁽⁴⁾ Kramer, G.; Jansen, M. J. Solid State Chem. 1995, 114, 206-210.

⁽⁵⁾ Kramer, G.; Hagele, E.; Wagner, N.; Jansen, M. Z. Anorg. Allg. Chem. 1996, 622, 1027-1034.

⁽⁶⁾ Kim, S.-J.; Lemaux, S.; Demazeau, G.; Kim, J.-Y.; Choy, J.-H. J. Am. Chem. Soc. 2001, 123, 10413-10414.

⁽⁷⁾ Demazeau, G.; Omeran, I.; Pouchard, M.; Hagenmuller, P. Mater. Res. Bull. 1976, 11, 1449-1452.

⁽⁸⁾ Wang, Y.; Walker, D.; Chen, B.-H.; Scott, B. A. J. Alloys Compd. 1999, 285, 98-104.

⁽⁹⁾ Panin, R. V.; Khasanova, N. R.; Abakumov, A. M.; Antipov, E. V.;

Van Tendeloo, G.; Schnelle, W. J. Solid State Chem. 2007, 180, 1566–1574.
 (10) Hansen, T.; Mueller-Buschbaum, Hk. Z. Anorg. Allg. Chem. 1992, 616, 67-70.

⁽¹¹⁾ Ilínets, A. M.; Ivanov-Emin, B. N.; Petrischeva, L. P.; Izmailovich, A. S. Koord. Khim. 1987, 13, 1660-1661.

Figure 1. Electron diffraction patterns of KPd₂O₃ along different zone axes.

for X-ray diffraction (XRD), the product was sealed into glass capillaries of 0.3 mm diameter.

The phase composition and lattice parameters were determined by powder XRD using a Huber G670 Guinier camera (Cu K α_1 radiation, germanium monochromator, and imageplate detector). Powder XRD data for structure refinement were collected on a STOE-STADI P diffractometer (Cu K α_1 radiation, germanium monochromator, and linear positionsensitive detector) in the range of 12–110° (2 θ) at 0.02° intervals. Electron diffraction was carried out with a Philips CM20 transmission electron microscope.

The most intense reflections on the XRD pattern could be indexed on a hexagonal unit cell with $a_{sub} = 3.0350(7)$ Å and $c_{sub} = 18.774(3)$ Å, while a complete indexing of the XRD pattern (including four reflections of low intensity) was done in a hexagonal unit cell with $a = 2a_{sub}$ and $c = c_{sub}$. For both settings, the reflections obeyed the extinction condition $hkl: -h + k + l \neq 3n$ indicating R3, R3, R32, R3m, and R3m as possible space groups. Electron diffraction (Figure 1) showed the unit cell to be hexagonal ($a \sim 6.07$ Å and $c \sim$ 18.80 Å) with the reflection conditions consistent with the XRD observations.

From the close resemblance between the XRD pattern of KPd₂O₃ (subcell setting) and those of β -Na_{0.6}CoO₂, a layered structure for the KPd₂O₃ phase was suggested. The initial model for Rietveld refinement was derived from the structure of β -Na_{0.6}CoO₂. It consisted of an alternating sequence of CoO_2 and Na layers with cobalt and sodium atoms in octahedral and trigonal-prismatic coordination, respectively.¹² Structure refinement was carried out in the most symmetric space group $R\overline{3}m$ with the program JANA 2000.¹³ In the initial supercell unit, the PdO₂ layer was modeled by two palladium atoms located in the positions 9e (Pd1) and 3a (Pd2) and two oxygen atoms at sites 18h (O1) and 6c (O2). The position of potassium at (0, 0, z) was determined by difference Fourier synthesis. From subsequent refinements, the O2 site was found to be unoccupied; therefore, this position was omitted from further analysis. Occupation factors for other sites appeared to be close to 1.0 and were fixed at this value at the last stages of the refinement. The final

Figure 2. Observed (+) and calculated (solid line) powder XRD patterns and difference (solid line on the bottom) of KPd₂O₃. Vertical bars indicate the positions of the Bragg peaks.

Table 1. Structure Refinement Results on KPd₂O₃^a

atom	site	X	у	Ζ	$U_{\rm iso}/{\rm \AA}^2$
Pd1	9e	0	0.5	0	0.006(1)
Pd2	3a	0	0	0	0.019(3)
K1	6c	0	0	0.1686(5)	0.040(3)
O1	18h	-0.173(2)	0.173(2)	0.0501(4)	0.029(3)

^{*a*} Trigonal, space group $R\overline{3}m$ (No. 166), Z = 6, a = 6.0730(1) Å, c = 18.7770(7) Å, and V = 599.75(3) Å³. Refinement parameters $R_1 = 0.062$, $R_p = 0.043$, $R_{wp} = 0.056$, and GOF = 1.11.

Rietveld refinement plot is shown in Figure 2. The chemical composition estimated from refined structure parameters given in Table 1 corresponds to the formula KPd_2O_3 .

Without taking oxygen vacancies into account, this structure can be viewed as an *AABBCC* sequence of close-packed oxygen layers stacked along the *c* axis, with palladium and potassium atoms occupying respectively all octahedral and one-quarter of the trigonal-prismatic interstitial sites between alternating pairs of oxygen layers. Compared to β -Na_xCoO₂, 25% of the oxygen sites appear to be unoccupied in the KPd₂O₃ structure. An ordering of the oxygen vacancies leads to the doubling of the *a* parameter and the formation of two distinct palladium sites with planar and octahedral coordination. It is accompanied by ordering of potassium atoms located at the trigonal-prismatic cavities formed by the remaining oxygen atoms (Figure 3a).

⁽¹²⁾ Fouassier, C.; Matejka, G.; Reau, J.-M.; Hagenmuller, P. J. Solid State Chem. 1973, 6, 532–537.
(13) Petricek, V.; Dusek, M.; Palatinus, L. JANA2000. The crystallo-

⁽¹³⁾ Petricek, V.; Dusek, M.; Palatinus, L. JANA2000. The crystallo graphic computing system; Institute of Physics: Praha, Czech Republic, 2000.

Communication

Figure 3. Crystal structure of the KPd₂O₃ phase: (a) alternation of Pd_2O_3 and K layers along the *c* axis; (b) projection of the Pd_2O_3 slab along the c axis.

Pd1-O1	$4 \times 1.963(9)$	K1-O1	$3 \times 2.738(13)$
Pd2-O1	$6 \times 2.044(13)$	K1-O1	$3 \times 2.872(13)$
Pd1-Pd2	3.0365(1)		

The most prominent feature of the KPd₂O₃ structure is the alternating sequence of $Pd_2O_3^-$ and K^+ layers along the c axis. From the point of view of oxygen packing, the $Pd_2O_3\Box^-$ layer can be described as an anion-deficient CdCl₂ layer. Ordering of cations or cation vacancies within the CdCl₂-type layer was observed in various complex oxides: ordering of different cations within the layer was reported for A_2PdO_3 and A_2PtO_3 (A = Li, Na), while ordering of cation vacancies with the formation of a $B_3 \Box O_8^{4-}$ slab was observed in $M_2B_3O_8$ oxides (M = Ca, Zn, Cd and B = Pt, Mn, Mo).^{9,14–16} An oxygen deficiency, ordered within a $CdCl_2$ type layer, is rather unique, and to our knowledge, this type of ordering in an oxygen sublattice is reported for the first time. An earlier similar arrangement was described for a Pt_2X_3 layer in platinum chalcogenides $K_2Pt_4X_6$ (X = S, Se), but in contrast to KPd₂O₃, potassium atoms in these compounds are tetrahedrally coordinated.¹⁷

In the KPd₂O₃ structure, the palladium atoms are present in two different environments: the Pd₂O₃⁻ layer is built up of PdO_4 and PdO_6 polyhedra connected via common edges (Figure 3b). Selected interatomic distances of KPd₂O₃ are given in Table 2. Both the Pd1–O and Pd2–O distances are shorter than the bond lengths usually observed for other complex oxides containing Pd^{2+} or Pd^{4+} (e.g., 2.033 Å in CaPd₃O₄² and 2.063 Å in Ca₄PdO₆⁸, respectively). They are consistent with the interatomic distances found for $Ba_2Hg_3Pd_7O_{14}$, in which charge diproportionation takes place, and Pd²⁺ and Pd⁴⁺ ions are located at different sites $(\sim 2.00 \text{ and } \sim 2.02 \text{ Å}, \text{ respectively})$. The bond valence sum (BVS)^{18,19} of Pd1 is found to be 2.43, while the BVS calculation for Pd2, with the r_0 estimated using data of Ba₂Hg₃Pd₇O₁₄ obtained from a single-crystal experiment,¹⁰ yields the value of 3.56. This finding allows us to suggest a charge-distribution model for palladium atoms with Pd²⁺ and Pd⁴⁺ in planar and octahedral sites, respectively. The average oxidation state of +2.5 for palladium in KPd₂O₃ is consistent with the proposed distribution of the Pd²⁺ and Pd⁴⁺ cations over the crystallographic positions, which results in a formal Pd^{2+}/Pd^{4+} ratio = 3:1. The magnetic susceptibility data (see Figure S1 in the Supporting Information) reveal this phase to be diamagnetic; this observation is in agreement with the presence of palladium ions in divalent and tetravalent low-spin states with the ground-state d^8 configuration for the Pd²⁺ cation in the square-planar environment and the ground-state t_{2g}^{6} configuration for the octahedral Pd⁴⁺ cation.

KPd₂O₃ appears to be the second example of complex palladium oxides in which charge disproportionation takes place. The average oxidation state of palladium in KPd₂O₃ of +2.5 is the same as that in the K₃Pd₂O₄ and LnPd₂O₄ (Ln = La, Pr, Nd, Gd, Y) phases. However, in contrast to KPd₂O₃, where palladium adopts both types of coordination polyhedra, for $K_3Pd_2O_4$ and $LnPd_2O_4$, the planar coordination of palladium remains preferable.4,5,9

Acknowledgment. The work was partly supported by a grant of the RF President for young scientists (Grant MK-5478.2008.3) and the IAP VI program of the Belgium government. The authors are grateful to R. Shpanchenko for help in the powder XRD data collection for structural refinement and to M. Kovba for help in the preparation of PdO.

Supporting Information Available: Crystallographic information (CIF) file and temperature dependence of the magnetic susceptibility of KPd₂O₃. This material is available free of charge via the Internet at http://pubs.acs.org.

⁽¹⁴⁾ Urland, W.; Hoppe, R. Z. Anorg. Allg. Chem. 1972, 392, 23-36.

⁽¹⁵⁾ Hauck, J. Z. Naturforsch. 1976, 31 B, 1179–1182.
(16) Turrillas, X.; Laviron, C.; Vincent, H.; Pannetier, J.; Joubert, J. C. J. Solid State Chem. 1987, 67, 297-307.

⁽¹⁷⁾ Bronger, W.; Jager, S.; Rennau, R.; Schmitz, D. J. Less-Common Met. 1990, 161, 25-30.

⁽¹⁸⁾ Brown, I. D.; Altermatt, D. Acta Crystallogr., Sect. B 1985, 41, 244-247

⁽¹⁹⁾ Brese, N. E.; O'Keeffe, M. Acta Crystallogr., Sect. B 1991, 47, 192-197.